Continuity of Functions

Lecturer: Xue Deng

Problem Introduction

Which function is continuous at point c ?

$\lim _{x \rightarrow c} f(x)$ does not exist.

$f(c)$ exists, but $\lim _{x \rightarrow c} f(x) \neq f(c)$.

$\lim _{x \rightarrow c} f(x)=f(c)$.

Definition Continuity at a Point

Let f be defined on an open interval containing c, we say that f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Require three things:
(1) $\lim _{x \rightarrow c} f(x)$ exists,
(2) $f(c)$ exists, $(c$ is in the domain of $f)$
3) $\lim _{x \rightarrow c} f(x)=f(c)$.

Note: Any one of these three fails, then f is discontinuous at c.

Theorems of Continuity of Functions

Th A: Continuity of Polynomial and Rational Functions

- A polynomial function is continuous at every real number c.
- A rational function is continuous at every real number c in its domain.
(That is, everywhere except there its denominator is zero.)
Th B: Continuity of Absolute Value and \boldsymbol{n} th Root Functions
- The absolute value function is continuous at every real number c.
- The nth root function is continuous at every real number c (n is odd)
- The nth root function is continuous at every positive real number c (n is even)

Theorems of Continuity of Functions

Th C: Continuity under Function Operations

If f, g are continuous at c, then the following expresssions are continuous.

$$
k f, f \pm g, f \cdot g, f / g(g(c) \neq 0), f^{n}, f^{\frac{1}{n}}(f(c)>0, n \text { is even })
$$

Theorems of Continuity of Functions

Th D: Continuity of Trigonometric Functions

$\sin x, \cos x, \tan x, \cot x, \sec x, \csc x$ are continuous at every real number c in their domains.

Th E: Composite Limit Theorem

$$
\begin{aligned}
& \lim _{x \rightarrow c} g(x)=L, f \text { is continuous at } L \\
\Rightarrow & \lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(L) .
\end{aligned}
$$

Definition Continuity on an Interval

f is continuous in (a, b)
2. f is right continuous at $a: \lim _{x \rightarrow a^{+}} f(x)=f(a) \quad f$ is continuous on $[a, b]$
3. f is left continuous at $b: \lim _{x \rightarrow b^{-}} f(x)=f(\mathrm{~b})$]

Theorems of Continuity of Functions

Th F: Intermediate Value Theorem

$$
\left.\begin{array}{l}
\text { If } f \text { is defined on }[a, b] \\
f \text { is continuous on }[a, b] \\
\forall w \in[f(a), f(b)]
\end{array}\right\} \Rightarrow \exists c \in[a, b] \text {, such that } f(c)=w .
$$

Definitions of Continuity of Functions

Left Continuity

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right) \quad\left(f\left(x_{0}^{-}\right)=f\left(x_{0}\right)\right)
$$

$f(x)$ is left continuous at x_{0} (continuity from the left)

Right Continuity

$\lim _{x \rightarrow x_{0}^{+}} f(x)=f\left(x_{0}\right) \quad\left(f\left(x_{0}^{+}\right)=f\left(x_{0}\right)\right)$
$f(x)$ is right continuous at x_{0}
(continuity from the right)

$f(x)$ is continuous at $x=x_{0} \Leftrightarrow f(x)$ is left and right continuous at $x=x_{0}$.

Example 1
By definition $\lim _{x \rightarrow c} f(x)=f(c)$
Prove that $f(x)=\left\{\begin{array}{cl}x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ is continuous at $x=0$.
$\because \lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$,
and $f(0)=0$,
$\lim _{x \rightarrow 0} f(x)=f(0)$,
$\therefore f(x)$ is continuous at $x=0$.

Example 2

Determine $f(x)=\left\{\begin{array}{cc}x^{2}, & x \leq 1, \\ x+1, & x>1,\end{array}\right.$ is continuous at $x=1$ or not ?
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}=1=f(1)$,
$\therefore f(x)$ is left continuous at $x=1$, $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x+1)=2 \neq f(1)$,

but is not right continuous at $x=1$,
$\therefore f(x)$ is not continuous at $x=1$.

Summary of Continuity of Functions

Definition: f is continuous at $c \Leftrightarrow \lim _{x \rightarrow c} f(x)=f(c)$
Require three things: (1) $\lim _{x \rightarrow c} f(x)$ exists
(2) $f(c)$ exists
(3) $\lim _{x \rightarrow c} f(x)=f(c)$

青 $f(x)$ is continuous at $x=x_{0} \Leftrightarrow f(x)$ is left and right continuous at $x=x_{0}$.

Questions and Answers

Q1: $f(x)=\left\{\begin{array}{ll}\sin \frac{1}{x}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ is continuous at $x=0$ or not?
Although $f(0)=0$,
but $\lim _{x \rightarrow 0} f(x)$ does not exist.
$\left(x \rightarrow 0, f(x)=\sin \frac{1}{x}\right.$ can jump between -1 and 1$)$
$\therefore f(x)$ is not continuous at $x=0$.

Questions and Answers

Q2: $f(x)=\left\{\begin{array}{cc}-x, & x \leq 0, \\ 1+x, & x>0,\end{array}\right.$ is continuous at $x=0$ or not?
Although $f(0)=0$
$\lim _{x \rightarrow 0^{-}}(-x)=0, \quad \lim _{x \rightarrow 0^{+}}(1+x)=1$,
$f\left(0^{-}\right) \neq f\left(0^{+}\right) \Rightarrow \lim _{x \rightarrow 0} f(x)$ does not exist

$\therefore f(x)$ is not continuous at $x=0$.

Continuity

