

Continuity of Functions

Lecturer: Xue Deng

Problem Introduction

Which function is continuous at point *c*?

f(c) exists, but $\lim_{x \to c} f(x) \neq f(c).$ v

 $\lim_{x\to c} f(x) = f(c).$

Definition Continuity at a Point

Let f be defined on an open interval containing c, we say that f is continuous at c if

$$\lim_{x \to c} f(x) = f(c)$$

Require three things:

$$\lim_{x\to c} f(x) \text{ exists,}$$

2 f(c) exists, (c is in the domain of f)

$$3 \quad \lim_{x \to c} f(x) = f(c).$$

Note: Any one of these three fails, then f is discontinuous at c.

Th A: Continuity of Polynomial and Rational Functions

- A polynomial function is continuous at every real number c.
- A rational function is continuous at every real number *c* in its domain.

(That is, everywhere except there its denominator is zero.)

Th B: Continuity of Absolute Value and *n*th Root Functions

- The absolute value function is continuous at every real number *c*.
- The *n*th root function is continuous at every real number *c* (*n* is odd)
- The *n*th root function is continuous at every positive real number *c* (*n* is even)

Th C: Continuity under Function Operations

If *f*, *g* are continuous at *c*, then the following expressions are continuous. $kf, f \pm g, f \cdot g, f/g (g(c) \neq 0), f^n, f^{\frac{1}{n}} (f(c) > 0, n \text{ is even}).$

 $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$ are continuous

at every real number c in their domains.

Composite Limit Theorem

$$\lim_{x \to c} g(x) = L, f \text{ is continuous at } L$$
$$\Rightarrow \lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right) = f(L).$$

Definition Continuity on an Interval

$$\begin{array}{c|c} f \text{ is continuous in } (a,b) \\ f \text{ is right continuous at } a: \lim_{x \to a^+} f(x) = f(a) \\ f \text{ is left continuous at } b: \lim_{x \to b^-} f(x) = f(b) \end{array}$$

Th F: Intermediate Value Theorem

If *f* is defined on [*a*,*b*] *f* is continuous on [*a*,*b*] $\forall w \in [f(a), f(b)]$ $\Rightarrow \exists c \in [a,b], \text{ such that } f(c) = w.$

Definitions of Continuity of Functions

Left Continuity

$$\lim_{x \to x_0^-} f(x) = f(x_0) \quad \left(f(x_0^-) = f(x_0) \right)$$

f(x) is left continuous at x_0

(continuity from the left)

Right Continuity $\lim_{x \to x_0^+} f(x) = f(x_0) \quad \left(f(x_0^+) = f(x_0) \right)$ f(x) is right continuous at x_0 (continuity from the right) right continuous 0 $\overline{x_0}$ x

f(x) is continuous at $x = x_0 \Leftrightarrow f(x)$ is left and right continuous at $x = x_0$.

Example 1By definition
$$\lim_{x \to c} f(x) = f(c)$$
Prove that $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ is continuous at $x = 0$.

$$\therefore \lim_{x \to 0} x \sin \frac{1}{x} = 0,$$

and $f(0) = 0,$
$$\lim_{x \to 0} f(x) = f(0),$$

 $\therefore f(x)$ is continuous at x = 0.

Example 2

Determine
$$f(x) = \begin{cases} x^2, & x \le 1, \\ x+1, & x > 1, \end{cases}$$
 is continuous at $x = 1$ or not?

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^2 = 1 = f(1),$$

 $\therefore f(x) \text{ is left continuous at } x = 1,$ $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x+1) = 2 \neq f(1),$

but is not right continuous at x = 1,

 $\therefore f(x)$ is not continuous at x = 1.

Summary of Continuity of Functions

f(x) is continuous at $x = x_0 \Leftrightarrow f(x)$ is left and right continuous at $x = x_0$.

Questions and Answers

Q1:
$$f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 is continuous at $x = 0$ or not?

Although
$$f(0) = 0$$
,
but $\lim_{x \to 0} f(x)$ does not exist.
 $(x \to 0, f(x) = \sin \frac{1}{x} \text{ can jump between } -1 \text{ and } 1$

 $\therefore f(x)$ is not continuous at x = 0.

Questions and Answers

Q2:
$$f(x) = \begin{cases} -x, & x \le 0, \\ 1+x, & x > 0, \end{cases}$$
 is continuous at $x = 0$ or not?

Although
$$f(0) = 0$$

$$\lim_{x \to 0^{-}} (-x) = 0, \quad \lim_{x \to 0^{+}} (1+x) = 1,$$
$$f(0^{-}) \neq f(0^{+}) \Longrightarrow \lim_{x \to 0} f(x) \text{ does not exist}$$

 $\therefore f(x)$ is not continuous at x = 0.

Continuity

•••••

.

••••

•••••

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

.

.

.

• • • • • • • • • • •